Probability Bounds for Polynomial Functions in Random Variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability Bounds for Polynomial Functions in Random Variables

Random sampling is a simple but powerful method in statistics and the design of randomized algorithms. In a typical application, random sampling can be applied to estimate an extreme value, say maximum, of a function f over a set S ⊆ R. To do so, one may select a simpler (even finite) subset S0 ⊆ S, randomly take some samples over S0 for a number of times, and pick the best sample. The hope is ...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Probability Generating Functions for Discrete Real Valued Random Variables

The probability generating function is a powerful technique for studying the law of finite sums of independent discrete random variables taking integer positive values. For real valued discrete random variables, the well known elementary theory of Dirichlet series and the symbolic computation packages available nowadays, such as Mathematica 5 TM, allows us to extend to general discrete random v...

متن کامل

Acceptable random variables in non-commutative probability spaces

Acceptable random variables are defined in noncommutative (quantum) probability spaces and some of probability inequalities for these classes  are obtained. These results are a generalization of negatively orthant dependent random variables in probability theory. Furthermore, the obtained results can be used for random matrices.

متن کامل

Local Tail Bounds for Functions of Independent Random Variables

It is shown that functions defined on {0, 1, . . . , r − 1}n satisfying certain conditions of bounded differences that guarantee subgaussian tail behavior also satisfy a much stronger “local” subgaussian property. For self-bounding and configuration functions we derive analogous locally subexponential behavior. The key tool is Talagrand’s (1994) variance inequality for functions defined on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 2014

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.2013.0637